對工程師而言,鐵磁性元件(電感)可能是最早接觸的非線性器件。但是根據制造商提供的數據,很難預測電感在高頻時的損耗。因為制造商通常只提供諸如開路電感、工作電流、飽和電流、直流電阻以及自激頻率等參數。對于大部分開關電源設計來說,這些參數已經足夠了,并且根據這些參數選擇合適的電感也非常容易。但是,對于超低電流、超高頻率開關電源來說,電感磁芯的非線性參數對頻率非常敏感,其次,頻率也決定了線圈損耗。
對于普通開關電源,相對于直流I2R損耗來說,磁芯損耗幾乎可以忽略不計。所以通常情況下,除了“自激頻率“這個與頻率有關的參數外,電感幾乎沒有其他與頻率相關的參數。但是,對于超低功率、超高頻率系統(電池供電設備),這些高頻損耗(磁芯損耗和線圈損耗)通常會遠遠大于直流損耗。
線圈損耗包括直流I2R損耗和交流損耗。其中,交流損耗主要是由于趨膚效應和鄰近效應所導致。趨膚效應是指隨著頻率的提高移動的電荷越來越趨于導體表面流動,相當于減小了導體導電的橫截面積,提高了交流阻抗。比如:在2MHz頻率,導體導電深度(從導體表面垂直向下)大概只有0.00464厘米。這就導致電流密度降低到原來的1/e (大概0.37)。
鄰近效應是指電流在電感相鄰導線所產生的磁場會互相影響,從而導致所謂的“擁擠電流”,也會提高交流阻抗。對于趨膚效應,可以通過多芯電線(同一根導線內含多根細導線)適度緩解。對于那些交流電流紋波遠小于直流電流的電路,多芯電線可以有效降低電感的總損耗。
磁芯損耗主要是由于磁滯現象以及磁芯內部傳導率或其他非線性參數的互感產生。在Buck拓撲結構中,第一象限的B-H磁滯回線對磁芯損耗影響最大。在第一象限這個局部圖中,磁滯回線顯示了電感從初始電感量過渡到峰值電感量再回到初始電感量的過程。如果開關電源穩定工作在不連續狀態,磁滯回線會從剩余電感量(Br)過渡到峰值電感量。如果開關電源工作在連續狀態,那么磁滯回線將會從直流偏置點上升到曲線峰值,再回到直流偏置點。
13714638769、13326887062 / 張先生
0769-81667646
0769-81667646
dgyiyangdz@163.com
東莞市長安鎮錦廈社區振安中路143號
東莞市長平鎮美村金塘路鴻遠科技園(工廠)
東莞市奕揚電子有限公司 版權所有 © Copyright 2021 【粵ICP備18028273號】
公司地址:東莞市長安鎮錦廈社區振安中路143號